M1.(a) (i) Propanone evaporates (or similar)

1

Removes water (from the precipitate)

Accept 'removes impurities / excess reagents'.

Accept 'salt insoluble in propanone'.

1

(ii) Add NaOH / NH₃ / Na₂CO₃

1

No green ppt

Accept 'no visible change'.

Must have correct reagent to score this mark.

1

(iii) Some salt dissolves (in propanone) **or** some lost in filtration **or** some Fe²⁺ gets oxidised (to Fe³⁺ in air)

Do not accept 'reaction reversible' or 'incomplete reaction' or similar.

1

(iv) Moles $Fe^{2+} = 2.50 \times 10^{-2}$

Accept 2.5 × 10⁻²

1

 $M_{\rm r}$ of salt = 179.8

Allow 180

Allow if 179.8 or 180 appears in a calculation.

1

Mass of salt = $179.8 \times 2.5 \times 10^{-2} \times 0.95 = 4.27$ (g)

Correct answer with no working scores this mark only.

Allow range 4.2 to 4.3 (g)

(v) 1.67 mol or correct ratio of 5FeC₂O₄: 3MnO₄⁻

1

(b) $Ca^{2+} + C_2O_4^{2-} \rightarrow CaC_2O_4$ Accept multiples.

1

(c) (Insoluble) calcium ethanedioate coats surface

Allow 'calcium ethanedioate is insoluble'.

Do not allow answers based on ethanedioic acid being a weak acid.

Do not accept 'acid used up' or 'reaction very fast'.

1

(d) Small amount of tea used **or** concentration of the acid in tea is low

Accept 'high temperature decomposes the acid'.

Accept 'calcium ions in milk form a precipitate with the acid'.

Do not accept 'do not drink tea often' or similar.

1

(e) Mass of acid = 180.0 and mass of reagents = 450.0 Accept 180 and 450.

1

 $(180 / 450 \times 100 =) 40.0\%$

Do not penalise precision.

Correct answer without working scores this mark only.

[14]

M2. (a) Hydrogen/H₂ gas/bubbles

1

1.0 mol dm⁻³ HCl/H⁺

	At 298K and 100kPa	1
	Allow 1 bar instead of 100 kPa Do not allow 1 atm	1
	Pt (electrode)	1
(b)	Li ⁺ + MnO₂ + e ⁻ → LiMnO₂ Ignore state symbols	1
	-0.13(V)	1
(c)	Fe³+ ions reduced to Fe²+	
(6)	Can score from equation/scheme	1
	Because $E(Fe^{3+}(/Fe^{2+})) > E(H^+/H_2)/E(hydrogen)$ Allow emf/ E_{cell} +ve/0.77V Allow Fe ³⁺ better oxidising agent than H ⁺	
	Allow H ₂ better reducing agent than Fe ²⁺ Only award this explanation mark if previous mark given	1
(al)	Malaa Or O a -22 7 y 0 04/4000 - 2 27 y 40 (
(d)	Moles $Cr_2O_7^{2-} = \underline{23.7 \times 0.01/1000} = 2.37 \times 10^{-4}$ 1 mol $Cr_2O_7^{2-}$ reacts with 6 mol Fe^{2+} so moles	1
	Fe ²⁺ in 25 cm ³ = $6 \times 2.37 \times 10^{-4} = 1.422 \times 10^{-3}$ $M1 \times 6$	1
	Moles Fe ²⁺ in 250 cm ³ = 1.422 × 10 ⁻² M2 × 10 or M4/10	1
	Original moles $Fe^{2+} = \underline{10.00/277.9} = 0.0360$ Independent mark	1
	Moles Fe ²⁺ oxidised = $0.0360 - 0.0142 = 0.0218$ M4 - M3	1
	% oxidised = (0.0218 × 100)/0.0360 = 60.5%	1

(M5 × 100)/M4 Allow 60 to 61 Note Max 3 if mol ratio for M2 wrong eg 1:5 gives 67.1% 1:1 gives 93.4% Note also, 39.5% (39-40) scores M1, M2, M3 and M4 (4 marks)

[14]

M3. (a) (i) $0.00301/3.01 \times 10^{-3}$;

Penalise < 3sf in (a)(i); Allow $3.01 \times 10^{-3} - 3.05 \times 10^{-3}$. (for candidates who have used Mg as 24)

1

1

(ii) 0.00602

Allow correct answer $a(i) \times 2$.

1

(iii) $0.00965/9.65 \times 10^{-3}$;

Allow 0.009646/ 0.0096-0.0097.

1

(iv) 0.00363 moles;

Allow range 0.0035 to 0.0037. Allow (a)(iii) – 2 (a)(ii) (must be positive).

1

(b) PV = nRT;

Allow all capitals/ lower case.

1

(ii) 0.0476

$$0.0474$$
- 0.0476
Allow (a) (i) × 2

Allow consequential from (a) (ii) ie allow (a) (ii) × 1000/39.30 Ignore units even if wrong

1

(b)
$$\frac{34 \times 100}{212.1}$$

Allow mass or Mr of desired product times one hundred divided by total mass or Mr of reactants/products If 34/212.1 seen correctly award M1

1

Allow 16% 16 scores 2 marks

1

Ignore all working

1

(d) PV = nRT or n =
$$\frac{PV}{RT}$$

If rearranged incorrectly lose M1 and M3

1

$$n = \frac{100000 \times 1.53 \times 10^{-2}}{8.31 \times 310}$$

M2 for mark for converting P and T into correct units in any expression

1

$$= 0.59(4)$$

Allow 0.593

M3 consequential on transcription error only not on incorrect P and T

1

(e) (Na_2SO_4) H_2O (44.1%) 55.9% M1 is for 55.9 1 44.1/142.1 55.9/18 0.310 3.11 = 1 = 10 Alternative method gives180 for water part = 2 marks 1 x = 10X = 10 = 3 marks10.02 = 2 marks1 [13]