Removes water (from the precipitate)
Accept 'removes impurities / excess reagents'.
Accept 'salt insoluble in propanone'.
(ii) Add $\mathrm{NaOH} / \mathrm{NH}_{3} / \mathrm{Na}_{2} \mathrm{CO}_{3}$

No green ppt
Accept 'no visible change'.
Must have correct reagent to score this mark.
(iii) Some salt dissolves (in propanone) or some lost in filtration or some Fe^{2+} gets oxidised (to Fe^{3+} in air)

Do not accept 'reaction reversible' or 'incomplete reaction' or similar.
(iv) Moles $\mathrm{Fe}^{2+}=2.50 \times 10^{-2}$

Accept 2.5×10^{-2}
M_{r} of salt $=179.8$
Allow 180
Allow if 179.8 or 180 appears in a calculation.

Mass of salt $=179.8 \times 2.5 \times 10^{-2} \times 0.95=4.27(\mathrm{~g})$
Correct answer with no working scores this mark only.
Allow range 4.2 to 4.3 (g)
Page 2

(v) 1.67 mol or correct ratio of $5 \mathrm{FeC}_{2} \mathrm{O}_{4}: 3 \mathrm{MnO}_{4}^{-}$

(b) $\mathrm{Ca}^{2+}+\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \rightarrow \mathrm{CaC}_{2} \mathrm{O}_{4}$

Accept multiples.
(d) Small amount of tea used or concentration of the acid in tea is low Accept 'high temperature decomposes the acid'.
Accept 'calcium ions in milk form a precipitate with the acid'.
Do not accept 'do not drink tea often' or similar.
(e) Mass of acid $=180.0$ and mass of reagents $=450.0$

Accept 180 and 450.
($180 / 450 \times 100=$) 40.0%
Do not penalise precision.
Correct answer without working scores this mark only.

M2. (a) Hydrogen/ H_{2} gas/bubbles
$1.0 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl} / \mathrm{H}^{+}$
At 298 K and 100 kPa
Allow 1 bar instead of 100 kPaDo not allow 1 atm1
Pt (electrode)
(b) $\mathrm{Li}^{+}+\mathrm{MnO}_{2}+\mathrm{e}^{-} \rightarrow \mathrm{LiMnO}_{2}$Ignore state symbols
$-0.13(\mathrm{~V})$
(c) Fe^{3+} ions reduced to Fe^{2+}
Can score from equation/scheme
Because $E\left(\mathrm{Fe}^{3+}\left(/ \mathrm{Fe}^{2+}\right)\right)>E\left(\mathrm{H}^{+} / \mathrm{H}_{2}\right) / E($ hydrogen $)$
Allow emf/E $E_{\text {cel }}+v e / 0.77 \mathrm{~V}$
Allow Fe^{3+} better oxidising agent than H^{+}
Allow H_{2} better reducing agent than Fe^{2+}
Only award this explanation mark if previous mark given
(d) Moles $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}=\underline{23.7 \times 0.01 / 1000}=2.37 \times 10^{-4}$
$1 \mathrm{~mol} \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ reacts with $6 \mathrm{~mol} \mathrm{Fe}{ }^{2+}$ so moles
Fe^{2+} in $25 \mathrm{~cm}^{3}=6 \times 2.37 \times 10^{-4}=1.422 \times 10^{-3}$
$M 1 \times 6$
Moles Fe^{2+} in $250 \mathrm{~cm}^{3}=1.422 \times 10^{-2}$
M2 $\times 10$ or M4/10
Original moles $\mathrm{Fe}^{2+}=\underline{10.00 / 277.9}=0.0360$
Independent mark
Moles Fe^{2+} oxidised $=0.0360-0.0142=0.0218$
M4-M3
$\%$ oxidised $=(0.0218 \times 100) / 0.0360=60.5 \%$
(M5 $\times 100$)/M4
Allow 60 to 61
Note Max 3 if mol ratio for M2 wrong
eg 1:5 gives 67.1\%
1:1 gives 93.4\%
Note also, 39.5\% (39-40) scores M1, M2, M3 and M4 (4 marks)

1
[14]

M3. (a) (i) $0.00301 / 3.01 \times 10^{-3}$;
Penalise < 3sf in (a)(i);
Allow $3.01 \times 10^{-3}-3.05 \times 10^{-3}$.
(for candidates who have used Mg as 24)
(ii) 0.00602

Allow correct answer a(i) $\times 2$.
(iii) $0.00965 / 9.65 \times 10^{-3}$;

Allow 0.009646/ 0.0096-0.0097.
(iv) 0.00363 moles;

Allow range 0.0035 to 0.0037 .
Allow (a)(iii) - 2 (a)(ii) (must be positive).
(b) $\mathrm{PV}=\mathrm{nRT}$;

Allow all capitals/ lower case.
$\mathrm{V}=\frac{0.512 \times 8.31 \times 298}{96000}$;
M2 Mark is for all numbers correct.
If units in answer are in dm^{3} allow this expression with 96 in denominator.
$0.0132 \mathrm{~m}^{3} / 13.2 \mathrm{dm}^{3}$;
M3 Must have correct units/ allow $13200 \mathrm{~cm}^{3}$.
Allow min 2 sig figs in answer.
(c) $\mathrm{O}=69.6(\%)$;
$\frac{30.4}{14} \quad \frac{69.6}{16}$
$2.17: 4.35$
Use of 7/8 CE then M1 only.
(1:2) $\underline{\mathrm{NO}}_{2}$
Mark for formula not ratio.
If NO_{2} and no working shown then allow 1 mark.
If $69.6 \%+\mathrm{NO}_{2}$ only $=2$.
Need to see evidence of M2 working.
Allow M2 conseq on the wrong M1 (ie max 1).

M4. (a) (i) $\quad M_{r}=132.1$
132
0.0238

Allow 0.024
Allow 0.0237
Penalise less than 2 sig fig once in (a)
(ii) 0.0476
0.0474-0.0476

Allow (a) (i) $\times 2$
(iii) 1.21

Allow consequential from (a) (ii) ie allow (a) (ii) $\times 1000 / 39.30$ Ignore units even if wrong
(b) $\frac{34 \times 100}{212.1}$

Allow mass or Mr of desired product times one hundred
divided by total mass or Mr of reactants/products
If 34/212.1 seen correctly award M1
$=16.0(3) \%$
Allow 16\%
16 scores 2 marks
(c) $100(\%)$

Ignore all working
(d) $\mathrm{PV}=\mathrm{nRT}$ or $\mathrm{n}=\frac{\mathrm{PV}}{\mathrm{RT}}$

If rearranged incorrectly lose M1 and M3
$\mathrm{n}=\frac{100000 \times 1.53 \times 10^{-2}}{8.31 \times 310}$
M2 for mark for converting P and T into correct units in any expression
$=0.59(4)$
Allow 0.593
M3 consequential on transcription error only not on incorrect P and T
(e) $\quad\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right) \quad \mathrm{H}_{2} \mathrm{O}$
(44.1\%) 55.9\%

M1 is for 55.9

44.1/142.1 55.9/18
 0.310
 3.11
 = 1
 $=10$

Alternative method gives180 for water part = 2 marks

$$
x=10
$$

$$
X=10=3 \text { marks }
$$

$$
10.02=2 \text { marks }
$$

